Indirect causes, dependencies and causality in Bayesian networks

نویسنده

  • Alexander Motzek
چکیده

Modeling causal dependencies in complex or time-dependent domains often demands cyclic dependencies. Such cycles arise from local points of views on dependencies where no singular causality is identifiable, i.e., roles of causes and effects are not universally identifiable. Modeling causation instead of correlation is of utmost importance, which is why Bayesian networks are frequently used to reason under uncertainty. Bayesian networks are probabilistic graphical models and allow for a causal modeling approach with locally specifiable and interpretable parameters, but are not defined for cyclic graph structures. If Bayesian networks are to be used for modeling uncertainties, cycles are eliminated with dynamic Bayesian networks, eliminating cycles over time. However, we show that eliminating cycles over time eliminates an anticipation of indirect influences as well, and enforces an infinitesimal resolution of time. Without a “causal design,” i.e., without representing direct and indirect causes appropriately, such networks return spurious results. In particular, the main novel contributions of this thesis can be summarized as follows. By considering specific properties of local conditional probability distributions, we show that a novel form of probabilistic graphical models rapidly adapts itself to a specific context at every timestep and, by that, correctly anticipates indirect influences under an unrestricted time granularity, even if cyclic dependencies arise. We show that this novel form of probabilistic graphical models follows familiar Bayesian networks’ syntax and semantics, despite being based on cyclic graphs. Throughout this thesis, we show that no external reasoning frameworks are required, no novel calculus needs be introduced, no computational overhead for solving common inference-, queryand learningproblems is introduced, and that familiar algorithmic schemes remain applicable. We feel confident to say that Bayesian networks and dynamic Bayesian networks can be based on cyclic graphs. In effect, we show, for the very first time, that a novel dynamic probabilistic graphical model is an intrinsic representation of a full joint probability distribution over multiple full joint probability distributions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indirect Causes in Dynamic Bayesian Networks Revisited

Modeling causal dependencies often demands cycles at a coarse-grained temporal scale. If Bayesian networks are to be used for modeling uncertainties, cycles are eliminated with dynamic Bayesian networks, spreading indirect dependencies over time and enforcing an infinitesimal resolution of time. Without a “causal design,” i.e., without anticipating indirect influences appropriately in time, we ...

متن کامل

Developing an Integrated Simulation Model of Bayesian-networks to Estimate the Completion Cost of a Project under Risk: Case Study on Phase 13 of South Pars Gas Field Development Projects

Objective: The aim of this paper is to propose a new approach to assess the aggregated impact of risks on the completion cost of a construction project. Such an aggregated impact includes the main impacts of risks as well as the impacts of interactions caused by dependencies among them. Methods: In this study, Monte Carlo simulation and Bayesian Networks methods are combined to present a frame...

متن کامل

A Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine

This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...

متن کامل

Learning Causal Networks from Microarray Data

We report on a new approach to modelling and identifying dependencies within a gene regulatory cycle. In particular, we aim to learn the structure of a causal network from gene expression microarray data. We model causality in two ways: by using conditional dependence assumptions to model the independence of different causes on a common effect; and by relying on time delays between cause and ef...

متن کامل

Causal models have no complete axiomatic characterization

Markov networks and Bayesian networks are effective graphic representations of the dependencies embedded in probabilistic models. It is well known that independencies captured by Markov networks (called graph-isomorphs) have a finite axiomatic characterization. This paper, however, shows that independencies captured by Bayesian networks (called causal models) have no axiomatization by using eve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017